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Note on the Kaplan—Yorke Dimension and
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A number of new relations between the Kaplan—Yorke dimension, phase space
contraction, transport coefficients and the maximal Lyapunov exponents are
given for dissipative thermostatted systems, subject to a small but non-zero
external field in a nonequilibrium stationary state. A condition for the exten-
sivity of phase space dimension reduction is given. A new expression for the
linear transport coefficients in terms of the Kaplan—Yorke dimension is derived.
Alternatively, the Kaplan-Yorke dimension for a dissipative macroscopic
system can be expressed in terms of the linear transport coefficients of the
system. The agreement with computer simulations for an atomic fluid at small
shear rates is very good.

KEY WORDS: Dynamical systems; KY-dimension; Lyapunov exponent;
transport coefficient.

1. INTRODUCTION

The Kaplan-Yorke (KY) or Lyapunov dimension was introduced” as a
conjecture relating the Hausdorff (H) dimension and the Lyapunov
exponents of the invariant measure of a given dynamical system.’> This
allows a computation of the H-dimension of the attractor of a dissipative
dynamical system in terms of its Lyapunov exponents. Its validity has been
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proven for two dimensional dynamical systems® and for a rather large
class of stochastic systems.® In general one only knows that the KY-
dimension is an upper bound for the H-dimension.*¥ Although it is not
hard to construct rather artificial counter examples, it is generally believed
that the conjecture holds for “generic” dynamical systems.®

In this paper we will discuss a relation (see Eq. (4.10) below) between
the KY-dimension in large thermostatted systems and their physical
properties such as the transport coefficients in a nonequilibrium stationary
state. Such a relation allows us to estimate the KY-dimension from a
measurement of the transport coefficient. In doing so we obtain a new
relation between a dynamical quantity (the KY-dimension) and a physical
quantity (the transport coefficient).

A difficulty in doing this is that while the dynamical quantities are
usually defined for any finite number of particles N, the physical quantities
usually refer to systems of very large N, so that one can meaningfully define
intensive quantities, which only depend on intrinsic parameters like the
number density n = N/V rather than on N and V separately, where V is the
volume of the system. We would like to state this by saying that strictly
speaking, a thermodynamic limit has to be taken, i.e., N - oo, V' — oo with
the number density (N/V — n) and other intensive quantities, such as in
particular the shear rate, considered in this paper, held constant. This is
straightforward if the linear transport coefficients are required and the limit
of the external field F,— 0 is taken before the limit N — oo, as in linear
response theory. However, for finite fields, changes in the behavior of the
system can occur when the thermodynamic limit is approached—as, e.g., the
onset of turbulence in a sheared system.® In this paper we are interested only
in the behavior of systems before such a transition takes place, like the laminar
flow of a sheared fluid considered in Section 5. We think, nevertheless, that our
results can be usefully formulated for large systems using expressions like “for
sufficiently large N” without taking the mathematical limit (see comment after
Eq. (2.4) for a more precise discussion). Although this expression is not mathe-
matically well defined, we think that its meaning will be clear in any practical
application (see note 11 on p. 28 for an attempt to clarify this point).
Moreover, because errors in intensive quantities are typically O(N ~') where
N ~ 107, the approach is physically reasonable.

The above mentioned connection between a dynamical and ther-
modynamic treatment requires the usually discrete Lyapunov spectrum to
be effectively replaced by a continuous intensive spectrum and an intrinsic
version of the KY-dimension to be introduced. In Section 4 we show how
this can be implemented, after having introduced the basic equations which
connect the dynamical and physical quantities in Section 2, and deriving a
new exact relation for the linear transport coefficients in Section 3.
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2. BASIC RELATIONS AND DEFINITIONS

As has been shown before,”® there is a direct relationship between
the sum of the non-zero Lyapunov exponents 4; with 4,=4,,,, 1 <i<
2dN — f (where N is the number of particles, d the Cartesian dimension,
and f the number of zero Lyapunov exponents) and the phase space con-
traction rate in a thermostatted system (cf. Eq. (5.1)),® subject to an exter-
nal force F,, in a non equilibrium stationary state, of the form:

2dN — f

Y. Ain(Fo)=AyN(F,) (2.1)

i=1

Here the subscript N indicates the N-dependence of the various quantities
in Eq. (2.1), 2dN — f'is the effective number of degress of freedom in phase
space of the system and A (F,) =(9/0I')- T is the phase space contraction
rate, where I'" stands for the collection of the coordinates and momenta of
the N particles and T for its time derivative. For macroscopic systems, i.e.,
systems with very large N, one can use the equality of the dynamical phase
space contraction and the physical entropy production®!® and obtain
from Eq. (2.1):

1 2dN —f O'N(Fg)_JN(Fe)Fe_ LN(Fe)Fz
nkB - nkBT N nkBT

(2.2)

Here ay(F,), Jy(F,), and Ly(F,) are the entropy production rate per unit
volume, the dissipative flux (per unit volume) and the transport coefficient
respectively, induced in the system in the stationary state by the external
force F,, where a nonlinear constitutive relation Jy(F,) = —Ly(F,) F, has
been used. The subscript N indicates the N-dependence for finite systems.
The kinetic temperature 7 is determined by the relation:

1 N

dN—d—ll.Z

=1

2
Py, T (2.3)
m

where m is the particle mass, {p;,i=1, N} are the peculiar momenta and
T is the kinetic temperature.

For systems at equilibrium the thermodynamic temperature appearing
in Eq. (2.3) should strictly only be calculated in the thermodynamic limit.
However, for nonequilibrium systems, as mentioned above the application
of the limit N - oo is not straightforward.
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Still, for sufficiently large values of N, Eq. (2.2) can be interpreted as:

1 2dN—f F L(F,) F?
z Ji, n(F,) = O-n(kE)-i-O(N*I)z —%—i— O(N~Y) (24)
i=1 B B

where by O(N~') we mean that—like in equilibrium—the finite size
corrections can be bounded by a function of the form CN ~! with C of
order 1. Although this condition on the constant C is not mathematically
precisely defined, we discuss in Section 5 numerical experiments, which will
give an indication of the magnitude of the O(N ~!) corrections in the rela-
tionship between the KY-dimension and the viscosity. In what follows
when we write O(N ~'), we will always intend it to carry the particular
meaning given by the above discussion.

Since we are interested here in the linear (F,) regime one can use that
Ly(F,)=Ly+ O(F?),% where Ly=Ly(0)#0 is the linear transport coef-
ficient. We note that the left hand side of Eq. (2.2) is not restricted to small
fields, due to its dynamical origin, and that the right hand side is related
for small fields to the usual entropy production rate per unit volume of
Irreversible Thermodynamics.!"

We now introduce the Kaplan—Yorke (KY) dimension. If Ny is the
largest integer for which Y X1 4, v(F,) >0, the KY-dimension, Dgy, v,V
for a finite system with a discrete Lyapunov spectrum, is defined by:!:7

S dy w(F,)

Diy v=Ngy+
N V]

(2.5)

where we have not indicated the N-dependence of Ngy.

3. SMALL PHASE SPACE REDUCTION

In case the phase space dimension reduction is smaller than one, Eq.
(2.5) can be reduced to the exact equation:

-t —ou(F) V

z /1 ( ) mmN( e)(sz_f_DKY,N(Fe)): k
i=1 B

(3.1)
where the minimum Lyapunov exponent, Ay, n(F,) = Ay 7 §(F.). Equa-
tion (3.1) provides an exact relationship between the finite system entropy
production, the KY-dimension and A.;, y(F,). As far as we are aware this
is the first time this has been noted for an N-particle system. It can be

¢ Here and in what follows we assume that the transport coefficients are even in F,.
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combined with Eq. (2.2) to relate the field-dependent transport coefficient
to the KY-dimension and A, »(F,). Further, from Eqgs. (3.1) and (2.2) we
can then trivially calculate the linear (i.e., the limiting zero field) transport
coefficient in linear response theory as,

LN: lim (2dN_f_ DKY, N(Fe)z) )“max, N(Fe) nkBT (32)

F,—>0 NF
A similar relation has been obtained for the periodic Lorentz gas on the
basis of periodic orbit theory.(!? We remark that from the point of view of
linear response theory, ie., Eq. (3.2), a phase space dimension reduction
smaller than one occurs for any N, including N — oo. In that case one can
let N - oo in Eq. (3.2) and obtain a new exact relation for the linear trans-
port coefficients, L =limy _, ., Ly, equivalent to the Green—Kubo formulae.
The corresponding expression for the KY-dimension of the steady state
attractor for sufficiently small fields, is given by:

LF2N

Dy wF) = 2N — [~ 5=t

+O(F?) (33)

max N

To obtain the Egs. (3.2) and (3.3), we have used that for systems which are
symplectic at equilibrium, (i.e., all Hamiltonian equilibrium systems), one
can write for small F,: Apee v(Fo) = Amax v+ O(F2) = —Apin. v + O(F2),
Where lmax, N= )Vmax, N(O) and )Vmin, N= ;“min, N(O)

For systems which satisfy the Conjugate Pairing Rule'> ¥ (CPR) the
sum of each conjugate pair, i, i* =2dN — f—i+ 1 of Lyapunov exponents
is

2% F)V
)L,A’N(Fe)—i—)v,-*’N(Fe):k(;d;/_)f), Vi (3.4)

We note that in nonequilibrium systems, the Conjugate Pairing Rule is
expected to hold only in systems that are thermostatted homogeneously. In
some systems there is numerical evidence that the maximal exponents
satisfy the Conjugate Pairing Rule, while the other pairs do not (that is
Eq. (3.4) is only true for i=1)."> These systems are said to satisfy the
weak Conjugate Pairing Rule (WCPR). By combining the Egs. (3.1) and
(3.4), one obtains for sufficiently small fields:

DKY, N(Fe) _ _lmax,N(Fe)
AN—12) " Do w(FL) (3:3)
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Substituting Eq. (3.4) into Eq. (2.2) and using Eq. (3.3), one obtains
another expression for the limiting KY-dimension, for sufficiently small
fields:

DKY, N(Fe) _ 3 + }'min,N(Fe)
(dN_ﬂz) B ;“max,N(Fe)

In Egs. (3.5) and (3.6), we have chosen to use the maximal Lyapunov
exponents as the conjugate pair in Eq. (3.4), and therefore these equations
are valid provided WCPR is obeyed. A similar looking formula, as Eq. (3.6)
with the first two terms on the right hand side only, has been quoted in
ref. 16.

As mentioned before, all the results in this section hold under the
hypothesis that the phase space dimension reduction is smaller than unity.
For this to be true for any given small F,, N is constricted to be of
O(F ;?), or equivalently, for any given large N, F, to be of O(N ~'?), as
can be seen from Eq. (3.3), so that F, and N are coupled.”

However, from a general physical point of view, we would like to have
a theory for Dy y, which holds uniformly in N, ie., with Eq. (3.3) valid
for every N with a small but fixed F,, so that N and F, are independent
variables. Now, it is trivial to generalize Eq. (3.1) to the case in which the
dimensional reduction is greater than one. In fact one then obtains that:

+O(F%) (3.6)

2dN — f
Z }Vi, ~n(Fe) = /INKY+1,N(Fe)(2dN_f_ DKY, ~n(Fe))
i=1
2dN —f
+ Y (An(F) = Ange1, mFL) (3.7)
i=Ngy+2

If we assume, as is usually done, that for sufficiently large N, Ay, ;=
Jaan— s+ O(N 1) for fixed j not varying with N; then for any fixed dimen-
sional reduction, Eq. (3.7) simply becomes Eq. (3.1) with a correction of
O(1) in N. Keeping the phase space dimension reduction fixed as N
increases still imposes a condition on F, of the form discussed above (i.e.,
F, and N are coupled and for any large N, F, is of O(N ~'2)). To better
control the errors when 2dN — f— N gy becomes large (O(N)), a more care-
ful treatment of the Eq. (3.1) is needed in order to obtain an expression
uniform in N for the phase space dimension reduction.

7 One might think that a phase space dimension reduction of one could hardly have any prac-
tical consequence in a macroscopic system whose phase space dimension is of the order of
10%. As we will discuss in Section 6, such a very small phase space dimension reduction is
expected to occur under physically realizable conditions.
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4. LYAPUNOV SPECTRUM FOR VERY LARGE N AND
LARGE PHASE SPACE REDUCTION

An approximate relation between the entropy production and the KY-
dimension for a many particle system was given by Posch and Hoover®
and a derivation of this relation was provided by Ruelle."” The approach
by Ruelle is based on the assumption that the Lyapunov exponents
approach an asymptotic density of exponents when the dimension of the
phase space tends to infinity. Here we use a similar assumption, a Smooth-
ness Hypothesis (implying that the spectrum can be naturally described by
a twice differentiable (C?) function linked to the density used by Ruelle),
which permits an estimation of the corrections due to the field. Moreover,
an explicit assumption on how the spectrum behaves as a function of N
permits us to control the error in N, leading to a relationship which holds
uniformly in N.

For large N one can indeed reformulate the definition of Dgy » in a
more analytical way. Consider thereto the stepwise continuous function of
a continuous variable 0 < x <2dN — f: y(x, F,) = A n(F,) fori—1<x<i.
If one introduces the integral:

in(x. Fo = [ Ty o) dy (41)

Eq. (2.5) can be rewritten in the form:

An(Dgy, n(F,), F,) =0 (4.2)

Since D gy y(F,) as well as jiy(x, F,) are expected to be extensive quan-
tities, i.e., they are proportional to N for large A, it is natural to define the
quantity

u(F) = (43)

where 0 (F,) is the dimension per effective degree of freedom (2dN — f)
in phase space. We now use again that, as N grows, the difference
Ai,n—2ip1, v Is expected to go to zero as N ~'. This suggests a possible
rescaling of the variable x in Ay(x, F,) to define the function A,(x, F,) =
Jn(XN, F,), ie., Ay(x, F,) = A n(F,) for (i—1)/(2dN — f) <x <i/(2dN — f).
The function A; x(F,) can then be expected to be well approximated by
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a continuous function of the variable x when N is sufficiently large. Thus
rewriting Eq. (4.1) as

x5 Fo = | i Fo) dy (44)

where 0 < x <1, Eq. (4.2) is equivalent to:
/"N(éN(Fe)a Fe) = 0 (45)

where 6 (F,) and uy(x, F,) can be assumed to be intensive quantities. We
can make this more precise by the following crucial assumption on the
nature of the function Ay(y, F,), i.e., of the Lyapunov spectrum:

Smoothness Hypothesis: If N is sufficiently large, one can write:

An(x, F)=1(x,F,)+ O(N ") (4.6)

with /(x, F,) a smooth function® of x and F,.!"”

Equation (4.6), as Eq. (2.4), is to be interpreted that for sufficiently
large N, |in(x, F,)—I(x, F,)| < C'N~! with C’ of order 1. Similarly, as
mentioned already above, all the O(N ') terms appearing in forthcoming
equations (see, e.g., Eq. (4.12)) have to be interpreted in this way and the
constants obtained then can be directly expressed in term of C’.

We now define, in analogy with Egs. (4.4) and (4.5):

X

mix, F)=[ Iy, F)dy (4.7)

0
and d(F,) through the equation:
m(d(F,), F,)=0 (4.8)
respectively. Clearly our Hypothesis implies that:
On(F,)=d(F,)+O(N™") (4.9)

where d(F,) and m(F,) are now intensive quantities. The function m(x, F,)
is sketched in Fig. 1, especially near x = 1.

81t is enough to assume that /(x, F,)e L' in x and C? near x = 1. Moreover we will require
that /(x, F,) is C? in F, for every x. This may not be the case when a phase transition
(18)
occurs.
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A
m(X,Fe)

Fig. 1. Sketch of the integral of a continuous Lyapunov spectrum m(x, F,) for a dissipative
system, starting with the largest Lyapunov exponent at x =0 and ending with the smallest
Lyapunov exponent at x = 1. The dashed line is the tangent at x=1.

From this figure one easily deduces that:

_y_mLF) Hopy Lot
dib)=1= ) T O F ) =T+

+O(FY  (4.10)

where m'(F,) is the derivative of m(x, F,) with respect to x at x=1. Here
we used that m'(1, F,)=I(1, F,) = A,;(F,) and that m(1, F,), is the sum
over all Lyapunov exponents, divided by (2dN — f), i.c., the phase space
contraction (or entropy production) rate per (effective) degree of freedom
in phase space.® Using Eq. (2.2), Eq. (4.10) can be rewritten as:

1 LF?
F)=1—— < F? 4.11
dUF) =1 5t O(FY) (4.11)

where the maximum and minimum Lyapunov exponents at equilibrium,

(ie., when F,=0) are 4,,,,=/(0,0) and 4,;, =/(1, 0), respectively. More-

over we have used that A,,,, = — A, and that /(1, F,)=1(1,0) + O(F?). In

terms of the extensive quantity Dy y(F,), Eq. (4.11) can be rewritten as:
DKY,N(F(’) 1 LFcz’

L o
WN—f =TT ddnk,7 T OFIFONTY(412)

where we kept the term f/(2dN) of O(N ~') on the left hand side of
Eq. (4.12) to facilitate comparison in Figs. 4 and 5 of Section 5 for N =32
particles. We observe that Eq. (4.12) is formally very similar to Eq. (3.3),

°In a more analytic way Eq. (4.10) follows from the inverse function theorem together with
our Smoothness Hypothesis and the fact that m(0, 0) =0.
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except for the correction term O(N ~!') and the substitution of the
asymptotic A.,, for the finite N value A.,, ». It is clear that the same
generalization can be performed as was used for the Egs. (3.5) and (3.6),
if one notes that in the present context, the CPR, Eq. (3.4), becomes:

a(F,)
dnk g

Ix, F,)+ (1 —x, F,)= (4.13)

From Eq. (4.11) it follows that in the linear regime the reduction in
phase space dimension in large thermostatted dissipative systems is exten-
sive. For those systems for which the Smoothness Hypothesis holds, this
result is exact. The extensive nature of the reduction has been noted
before.(® 2022

5. NUMERICAL TEST

We tested our Smoothness Hypothesis as well as Eq. (4.12) and equa-
tions derived from it assuming that the WCPR is valid, for a system of 32
WCA particles® undergoing shear flow in two dimensions. Although this
system does not satisfy the CPR, it does appear to satisfy WCPR to within
0.7% when N =232"% (which was within the limits of numerical error
achieved). The equations of motion for particles in such a system are the
so-called SLLOD equations,®

q4;=p;/m+ipy;, p:i=F,—iyp,; —ap; (5.1)

Here, at not too large Reynolds numbers, the momenta, p, are peculiar
momenta, i is the unit vector in the x direction and F; is the force exerted
on particle i by all the other particles, due to a Weeks—Chandler—Andersen
pair interaction potential'®® between the particles. The value of « is deter-
mined using Gauss’ Principle of Least Constraint to keep the kinetic tem-
perature fixed (i.e., to thermostat the system).® The SLLOD equations of
motion given by Eq. (5.1) then model Couette flow when the Reynolds
number is sufficiently small so that laminar flow is stable.® 1°

For this system the dissipative flux J is just the xy element of the
pressure tensor P,,; the transport coefficient L is the Newtonian shear
viscosity #; and the external field F, is the shear rate y =ou,/0y,"® where
u, is the local flow velocity in the x-direction in the system. The calcula-
tions were carried out at a reduced kinetic temperature of unity and a
reduced density n=N/V'=0.8. All physical quantities occurring in the

19 The « appearing in the Eq. (5.1) is related to the phase space contraction rate A in Eq. (2.1).
It is given by the relation 32~/ 1, = A = —dNa+ O(1).
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0 0.2 0.4 0.6 0.8 1
scaled exponent

Fig. 2. Discrete Lyapunov spectra for the SLLOD Egs. (5.1) for N=8 (crosses), 18 (open
circles), and 32 (small filled circles) and a shear rate y=0.05, as a function of the scaled
Lyapunov exponent pair index (i—1)/(2N —2), which runs from 0 to 1 for 1 <i<2N—1.

Eq. (5.1) as well as the temperature and density are made dimensionless by
reducing them with appropriate combinations of molecular quantities.® ¥
In particular the reduction factor for y amounts to about 1 ps ' for Argon
(cf., ref. 20). We note that for the SLLOD equations for shear flow in 2
dimensions using non autonomous Lees-Edwards periodic boundary con-
ditions,**" f =5 (due to the conservation of kinetic energy, momentum
and position of the center of mass).

Figures 2 and 3 represent a direct test of our Smoothness Hypothesis.
Figure 2 gives the Lyapunov spectrum for a system at a shear rate y =0.05
and for a number of particles N =38, 18, 32. As can be easily observed the
Lyapunov exponents for N =18 and 32 just fill the “open spaces” left by
the exponents for N =8 and 18, respectively.

Figure 3 shows the behavior of 4,,,,(y) and 4,,;,(y) as functions of the
externally applied field y. Although no numerical experiment can in general
confirm a mathematical hypothesis, the numerical results seem to agree
very well with our Smoothness Hypothesis.

We now use the Lyapunov spectrum to compute Dgy n(7). This is
shown in Fig. 4a where the Dy, y(y) is plotted for N=32, d=2 and
0 <y <0.5. As can be easily seen, although from the definition Eq. (2.5) one
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Fig. 3. Maximum and minimum Lyapunov exponents, A,..(y) (crosses) and A.;,(y) (cir-
cles), respectively, as a function of y.

would generally expect to see discontinuities in the first derivatives of this
function for those values of y for which N, changes (cf., ref. 25), the func-
tion appears very smooth for a rather large range of values of y. This
indicates that N =32 is already “big enough” to consider the Lyapunov
spectrum as “effectively continuous.”!! This also permits us to check the
validity of Eq. (4.12), and the large N versions of Egs. (3.5) and (3.6),
which in this case take the form:

Dy, N(V)_ . 77NV2 4 1
2dN—f T e, T OOV (5:2)
Dy n(7) ;"mdx ~(7) 4 1

=1- 0] O(N 53
Dy, N(V): Amin, N(V) 4 1 4
AN— /)2 3+ T N(y)—i—O(y )+ O(N ) (54)

respectively. Figure 4a shows that these expressions can describe the system

' More precisely one can say that for N =32 the numerical errors involved in computing the
Lyapunov exponents are already larger than the errors introduced by neglecting the
O(N ') correction. This observation provides a more precise meaning of expressions like
“sufficiently large N or “a constant C of order 1.”
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studied over the range of fields considered and that the correction terms
are small. The deviations in the values obtained using Egs. (5.2)—(5.4) are
within the numerical errors in the data.

We observe here that Dy n of Eq. (2.5) is well approximated by a
fourth order even polynomial in y for fields up to y ~ 0.5 and that at y ~ 0.3
the terms of O(y*) are just 5% of the terms of order O(y?), while the phase
space dimension reduction is clearly greater than unity. We note that the
quadratic dependence of Dy » on y implies a linear dependence of the
shear stress on 7, so the linear regime for N =32 extends beyond strain
rates where the phase space dimension reduction is smaller than one, which
runs (for N=32) till approximately y =0.175. At y=0.3, 5(y) is just 8§ %
smaller than #(0).

For completeness, in Fig. 4b, we expand Fig. 4a in the regime where
the phase space reduction is smaller than unity. In this regime, Egs. (3.3),
(3.5), and (3.6) are expected to be valid for the calculation of Dy » and
any deviations of the data from the value calculated using (2.5) are due to
the limited numerical precision of the independent calculations of the
viscosity and the Lyapunov exponents, O(F?%) corrections, or to the
assumption that the WCPR is obeyed. The numerical results indicate that
the numerical error gives the most significant contribution to the deviations
observed. The WCPR is found to be valid at least to within numerical error
for the state points considered. This is consistent with previous work.®

Using the fourth order fit to Dgy. 5, mentioned above, ie., Dgy x(7)
=2dN — f+ 3Dy 7> + 4Dy n* for the shear rate range [ —0.2, +0.2],
(cf., Fig.4b), one can calculate the zero strain rate or Newtonian shear
viscosity from # = Dy yAmaxkpT/2N. Here DY  and DY , are the
second and fourth derivatives of Dgy (y), respectively, with respect to 7y,
taken at y=0. This leads to a value of # =2.54 4+ 0.07, which agrees very
well within statistical uncertainties with the Newtonian viscosity directly
measured in the simulation and calculated from the defining constitu-
tive relation #(y)= — P, (y)/y, viz. n=2.52+0.05 (see the + points in
Fig. 4b—in most cases the agreement with the directly calculated values is
so good that the points are coincident with the filled circles on this scale).
Note that although the precision of Dy » is high (less than 0.03% statis-
tical error), the viscosity is related to the phase space contraction
(2dN — f— Dgy n) and thus calculation of the viscosity from the phase
space dimension reduction involves, at small fields, a very small difference
between two large numbers, resulting in a larger relative error in the
viscosity. Furthermore since the dimensional contraction is a quadratic
function of the shear rate, it results in a more difficult calculation of the
viscosity from the phase space dimension reduction than the constitutive
equation which is linear in the shear rate at low strain rates.
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1.00 D,y /(2AN-H=1.00-0.228v"+0. 130y
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Fig. 4. Comparison of various expressions for the KY-dimension per effective degree of
freedom, Dgy n(7)/(2dN — f) for sheared systems of N =32 particles in d=2 plotted as a
function of the shear rate y up to a strain rate of (a) y=0.5 and (b) y=0.2. Plotted are:
Dy n(7)/(2dN — f) from its definition Eq. (2.5) (filled circles); from Eq. (5.2) (plus signs);
from Eq. (5.3) (crosses); and from Eq. (5.4) (open circles). The solid line is a fit to Eq. (2.5)
with a fourth order polynomial even in y, and the dashed line identifies a phase space contrac-
tion of unity. We emphasize that in Eq. (5.2) the measured 7, deduced independently from the
constitutive equation, has been used in the computation of D gy n(7).
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Fig. 5. Comparison of various expressions for the KY-dimension per effective degree of
freedom, D gy n(7)/(2dN — f) for sheared systems of WCA particles in d=2 at a strain rate
of (a) 0.15 and (b) 0.5, plotted as a function of the number of particles, N. Plotted are:
Dy n(7)/(2dN — f) from its definition Eq. (2.5) (filled circles); from Eq. (5.2) (plus signs);
from Eq. (5.3) (crosses); and from Eq. (5.4) (open circles). Equation (3.3) can be used to
approximate the system size at which a phase space dimension reduction of unity will occur
for any given field. Using this relation, a phase space dimension reduction less than unity is
expected to occur for system sizes smaller than that indicated by the dashed line.
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Figure 5 compares the values of Dy » determined from Egs. (5.2),
(5.3), and (5.4) with those calculated from its definition in Eq. (2.5), as a
function of N for fields of y=0.15 and y=0.5. In Fig. 5a the results for the
field of y =0.15 are shown, and at this strain rate the dimensional contrac-
tion will be less than unity for systems size up to approximately N =50.
Therefore, for N <50, Eq. (3.3), which contains no O(N ~!) corrections,
will be valid, as will Egs. (3.5) and (3.6) if the WCPR is obeyed. All the
numerical results are consistent with the theory and with the assumption
that the WCPR is obeyed.!> At y=0.15, the values determined using the
various methods have a maximum difference of 0.2% and are within the
numerical errors at each particle number. In Fig. 5b, the results for a strain
rate of y=0.5 are shown. In this case, a dimensional contraction of less
than unity is only obtained for N <5. Again, the deviations between the
results calculated using Eqgs. (5.2)~(5.4) and the definition of Dgy, » given
by Eq. (2.5), are small (at most 1% ), and within the limits of error for all
particle numbers considered. This confirms that the coefficients of the
O(N ~') and O(F?) terms are small for this system.

6. CONCLUSIONS

We mention here a few implications of the results presented in this
paper.

1. The extensivity of the phase space reduction for large N and small
fields is here, to the best of our knowledge, demonstrated for the first time,
on the basis of the Smoothness Hypothesis of the Lyapunov spectrum and
the extensivity of the total entropy production.

2. The relationships given by Egs. (3.2), (3.3), and (5.2) also apply to
systems where not all particles are thermostatted. That is, they can be
applied to systems where the Gaussian thermostat operates on selected
particles, say those in the boundaries, while the remaining particles evolve
under Newtonian dynamics, supplemented by a dissipative field.?*?7” We
note that the Eqgs. (3.5), (3.6), (5.3), and (5.4) can only be assumed to
apply to homogeneously thermostatted systems in general, since only for
such systems can the WCPR be expected to hold.

3. A simple calculation shows that for a typical case such as one
mole of Argon at its triple point, sheared at the rate of 1 Hz,'? the dif-
ference between the Kaplan—Yorke dimension and the phase space dimen-
sion (O(10?*)) is tiny, namely ~3. This follows from Eq. (3.3), which
shows that the dimension loss, when measured in moles, is equal to the

121 Hz is approximately the maximum possible shear rate before the onset of turbulence.
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product of the total entropy production rate of the system and the recipro-
cal of the largest Lyapunov exponent. Since the largest Lyapunov exponent
is controlled by the most unstable atomic processes, it is always very small
~1 ps~! whether for atomic, molecular and even polymeric systems.

We note that this smallness of the phase space dimension reduction in
irreversible processes near equilibrium could well be the reason that linear
Irreversible Thermodynamics provides such a good description of non-
equilibrium systems close to equilibrium. This is because the ther-
modynamic properties are insensitive to the high order distribution
functions—including the full N-particle distribution function of the entire
system—since they are determined by a few low order distribution func-
tions, which “do not know” that the dimension of the steady state attractor
is only a few dimensions smaller than the ~102?* of the phase space of the
system.

4. For the system studied, the O(N ') corrections to Dyy v/
(2dN — f) that appear in Egs. (5.2), (5.3), and (5.4), due to the smoothness
hypothesis are small (see Fig.5) and less than 1.0% even for system sizes
of N=06. For the system studied it is not necessary to invoke the smooth-
ness hypothesis when N <5 because the dimensional contraction is less
than unity and Egs. (3.3), (3.5), and (3.6) apply.

5. In conclusion, Egs. (5.2)—~(5.4) are simple consequences of the
Eq. (4.10), they could nevertheless be useful for applications. In particular
the equations give a simple expression for the Kaplan—Yorke dimension of
the attractor of a class of many particle systems close to equilibrium in
terms of its linear transport coefficients.
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